Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118222, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38663778

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Presl (Cinnamomum cassia) is a common traditional Chinese medicine, which can promote the secretion and digestion of gastric juice, improve the function of gastrointestinal tract. Cinnamaldehyde (CA) is a synthetic food flavoring in the Chinese Pharmacopoeia. AIM OF THE STUDY: This study aimed to search for the active ingredient (CA) of inhibiting H. pylori from Cinnamomum cassia, and elucidate mechanism of action, so as to provide the experimental basis for the treatment of H. pylori infection with Cinnamomum cassia. MATERIALS AND METHODS: It's in vitro and in vivo pharmacological properties were evaluated based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and an acute gastric inflammation model in mice infected with H. pylori. Drug safety was evaluated using the CCK8 method and high-dose administration in mice. The advantageous characteristics of CA in inhibiting H. pylori were confirmed using acidic conditions and in combination with the antibiotics. The mechanism underlying the action of CA on H. pylori was explored using scanning electron microscopy (SEM), adhesion experiments, biofilm inhibition tests, ATP and ROS release experiments, and drug affinity responsive target stability (DARTS) screening of target proteins. The protein function and target genes were verified by molecular docking and Real-Time quantitative reverse transcription PCR (qRT-PCR). RESULTS: The results demonstrated that CA was found to be the main active ingredient against H. pylori in Cinnamomum cassia in-vitro tests, with a MIC of 8-16 µg/mL. Moreover, CA effectively inhibited both sensitive and resistant H. pylori strains. The dual therapy of PPI + CA exhibited remarkable in vivo efficacy in the acute gastritis mouse model, superior to the standard triple therapy. DARTS, molecular docking, and qRT-PCR results suggested that the target sites of action were closely associated with GyrA, GyrB, AtpA, and TopA, which made DNA replication and transcription impossible, then leading to inhibition of bacterial adhesion and colonization, suppression of biofilm formation, and inhibition ATP and enhancing ROS. CONCLUSIONS: This study demonstrated the suitability of CA as a promising lead drug against H. pylori, The main mechanisms can target GyrA ect, leading to reduce ATP and produce ROS, which induces the apoptosis of bacterial.


Assuntos
Acroleína , Antibacterianos , Cinnamomum aromaticum , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Animais , Acroleína/análogos & derivados , Acroleína/farmacologia , Helicobacter pylori/efeitos dos fármacos , Cinnamomum aromaticum/química , Antibacterianos/farmacologia , Camundongos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Masculino , Simulação de Acoplamento Molecular , Biofilmes/efeitos dos fármacos
2.
World J Gastroenterol ; 29(32): 4860-4872, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37701137

RESUMO

BACKGROUND: Resistance to antibiotics is one the main factors constraining the treatment and control of Helicobacter pylori (H. pylori) infections. Therefore, there is an urgent need to develop new antimicrobial agents to replace antibiotics. Our previous study found that linolenic acid-metronidazole (Lla-Met) has a good antibacterial effect against H. pylori, both antibiotic-resistant and sensitive H. pylori. Also, H. pylori does not develop resistance to Lla-Met. Therefore, it could be used for preparing broad-spectrum antibacterial agents. However, since the antibacterial mechanism of Lla-Met is not well understood, we explored this phenomenon in the present study. AIM: To understand the antimicrobial effect of Lla-Met and how this could be applied in treating corresponding infections. METHODS: H. pylori cells were treated with the Lla-Met compound, and the effect of the compound on the cell morphology, cell membrane permeability, and oxidation of the bacteria cell was assessed. Meanwhile, the differently expressed genes in H. pylori in response to Lla-Met treatment were identified. RESULTS: Lla-Met treatment induced several changes in H. pylori cells, including roughening and swelling. In vivo experiments revealed that Lla-Met induced oxidation, DNA fragmentation, and phosphatidylserine ectropionation in H. pylori cells. Inhibiting Lla-Met with L-cysteine abrogated the above phenomena. Transcriptome analysis revealed that Lla-Met treatment up-regulated the expression of superoxide dismutase SodB and MdaB genes, both anti-oxidation-related genes. CONCLUSION: Lla-Met kills H. pylori mainly by inducing oxidative stress, DNA damage, phosphatidylserine ectropionation, and changes on cell morphology.


Assuntos
Helicobacter pylori , Metronidazol , Humanos , Ácido alfa-Linolênico/farmacologia , Fosfatidilserinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
3.
Phys Rev E ; 98(1-1): 012418, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110804

RESUMO

A switching diffusion process (SDP) is a widely used stochastic model in physics and biology, especially for molecular motors that exhibit a discrete internal chemical kinetics as well as a continuous external mechanical motion. The nonequilibrium thermodynamics of switching diffusion processes has not been extensively studied yet. In the present paper, we propose the decomposition of the entropy production rate in one-dimensional SDPs, based on the flux decomposition. However, similar decompositions of the housekeeping heat dissipation rate and free energy dissipation rate cannot guarantee the non-negativity of each decomposed component. Hence, we modify this decomposition with the flow of exponential relative information under steady-state fluxes, resulting in another decomposition with all non-negative components. Furthermore, we also provide the nonequilibrium thermodynamics of one-dimensional SDPs under the perspectives of coarse -graining and exchange of information between the chemical kinetics and mechanical motion, resulting in several other decompositions of entropy production rate. Finally, we generalize all the results to high-dimensional SDPs with a more general mathematical treatment.

4.
Planta Med ; 79(8): 693-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23576174

RESUMO

Two new mono- and four new dimeric alkenylphenols, namely sarmentosumols A to F (1-6), were isolated from the aerial parts of Piper sarmentosum. The structures of these compounds were determined through a detailed analysis of NMR and MS data. Their antimicrobial activity against Escherichia coli, Staphyloccocus aureus, and Candida albicans, and their cytotoxic activity against human myeloid leukemia (K562) and human lung adenocarcinoma (A549) cell lines were also evaluated. Except for sarmentosumol A (1), whose MIC on S. aureus was reported to be 7.0 µg/mL, none of the other newly discovered compounds exhibited antimicrobial property. The studied compounds did not possess any cytotoxic property.


Assuntos
Anti-Infecciosos/isolamento & purificação , Fenóis/isolamento & purificação , Piper/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Fenóis/química , Fenóis/farmacologia , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA